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Abstract

Sensor devices and embedded processors are becoming ubiquitous, especially in measurement and
monitoring applications.Automaticdiscovery of patterns and trends in the large volumes of such data
is of paramount importance. The combination of relatively limited resources (CPU, memory and/or
communication bandwidth and power) poses some interesting challenges. We need both powerful and
concise “languages” to represent the important features of the data, which can (a) adapt and handle
arbitrary periodic components, including bursts, and (b) require little memory and a single pass over
the data.
This allows sensors toautomatically(a) discover interesting patterns and trends in the data, and (b)
perform outlier detection to alert users. We need a way so that a sensor can discover something like
“the hourly phone call volume so far follows a daily and a weekly periodicity, with bursts roughly
every year,” which a human might recognize as, e.g., the Mother’s day surge. When possible and if
desired, the user can then issue explicit queries to further investigate the reported patterns.
In this work we proposeAWSOM (Arbitrary Window Stream mOdeling Method), which allows
sensors operating in remote or hostile environments to discover patterns efficiently and effec-
tively, with practically no user intervention. Our algorithms require limited resources and can
thus be incorporated in individual sensors, possibly alongside a distributed query processing en-
gine [CCC+02, BGS01, MSHR02]. Updates are performed in constant time, using sub-linear (in
fact, logarithmic) space. Existing, state of the art forecasting methods (AR, SARIMA, GARCH, etc)
fall short on one or more of these requirements. To the best of our knowledge,AWSOM is the first
method that has all the above characteristics.
Experiments on real and synthetic datasets demonstrate thatAWSOM discovers meaningful patterns
over long time periods. Thus, the patterns can also be used to make long-range forecasts, which are
notoriously difficult to perform automatically and efficiently. In fact,AWSOM outperforms manually
set up auto-regressive models, both in terms of long-term pattern detection and modeling, as well as
by at least10× in resource consumption.



1 Introduction

Several recent applications produce huge amounts of data in the form of a semi-infinite stream of
values [GKMS01, GKS01, DGGR02, GG02]. Formally, a stream is a time sequence of numbers
X0, X1, . . . , Xi, . . . like samples or measurements at discrete time ticks.

Time sequences have attracted a lot of attention in the past [BJR94], for forecasting in financial,
sales, environmental, ecological and biological time series, to mention a few. However, several new
and exciting applications have recently become possible.

The emergence of cheap and small sensors has attracted significant attention. Sensors are small de-
vices that gather measurements—for example, temperature readings, road traffic data, geological and
astronomical observations, patient physiological data, etc. There are numerous, fascinating applica-
tions for such sensors and sensor networks, such as: (a) health care, with potentially wearable sensors
monitoring blood pressure, heart rate, temperature etc. and detecting patterns and abnormalities, (b)
industrial applications, keeping track of manufacturing process parameters and production, (c) civil
infrastructure, with sensors embedded in bridges and highways [CGN00] monitoring vibrations and
material deterioration, (d) road traffic conditions and safety, (e) smart houses and elderly care.

Although current small sensor prototypes [HSW+00] have limited resources (512 bytes to 128Kb
of storage), dime-sized devices with memory and processing power equivalent to a modern PDA are
not far away. In fact, PDA-like devices with data gathering units are already being employed in some
of the above applications (such as highway and industrial monitoring). The goal in the next decade
is single-chip computers with powerful processors and 2–10Gb [CBF+00, SGNG00] of nonvolatile
storage.

Furthermore, embedded processors are becoming ubiquitous and their power has yet to be har-
nessed. A few examples of such applications are: (a) intelligent (active) disks [RFGN00] that learn
common input traffic patterns and do appropriate prefetching and buffering, (b) intelligent routers that
can monitor data traffic and simplify network management.

From now on, we use the term “sensor” broadly, to refer to any embedded computing device with
fairly limited processing, memory and (optionally) communication resources and which generates a
semi-infinite sequence of measurements.

The resource limitations unavoidably imply the need for certain trade-offs—it is impossible to
store everything. Furthermore, we would like to make the most of available resources, allowing the
sensor to adapt and operate without supervision for as long as possible.

This is the problem we address in this work. The goal is a “language” (i.e., model or representation)
for efficient and effective, automatic stream mining. We want to collect information, in real-time and
without any human intervention, to answer questions such as “what is the typical temperature pattern
during a year” and “what is a good guess for the next Christmas’ phone traffic?” Furthermore, we
would ideally want to discover such patterns automatically and receive appropriate alerts.

This problem is orthogonal to that of continuous query processing. We focus on an adaptive
algorithm that can look for arbitrary patterns and requires noprior human intervention to guide it.
There are situations when we do not knowbeforehandwhat we are looking for. Furthermore, it may
be impossible to guide the sensor as it collects data, due to the large volume of data and/or limited or
unavailable communication.If further exploration is desired, users can issue targeted queries later on,
guided by the general long-term patterns to quickly narrow down the “search space.”

In detail, the main requirements are:

• No human in the loop: The method should not require human intervention before or during
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data gathering. In a general sensor setting wecannot affordhuman intervention.

• Periodic component identification: Humans can achieve this task, visually, from the time-
plot. Our method should automatically spot multiple periodic components, each of unknown,
arbitrary period.

• Online, one-pass algorithm: We can afford neither the memory or time for offline updates,
much less multiple passes over the data stream.

• Limited memory: Sensor memory will soon be exhausted, unless our method carefully detects
redundancies (or equivalently, patterns) and exploits them to save space. Furthermore, we ideally
want our models to collect data even when network connectivity is intermittent (e.g., due to
power constraints) or even non-existent.

• Simple, but powerful patterns: We need simple patterns (i.e., equations, rules) which can be
easily communicated to other nearby sensors or to a central processing site. These patterns
should be powerful enough to capture most of the regularities in real-world signals.

• Any-time forecasting/outlier detection: It is not enough to do compression (e.g., of long si-
lence periods, or by ignoring small Fourier or wavelet coefficients). The model should begen-
erative, in order to spot, store and report outliers: an outlier can be defined as any value that
deviates too much from our forecast (e.g., by two standard deviations). It should be able to do
so immediately, in real time.

Our AWSOM model has all of these characteristics, while none of the previously published methods
(AR and derivatives, Fourier analysis, wavelet decomposition—see Section 2.1) can claim the same.

The rest of the paper is organized as follows: Section 2 discusses the related work. Section 3 briefly
presents relevant background (some further information is contained in the appendices). Section 4
describes the proposed method and its algorithms. Section 5 presents experimental results on real and
synthetic datasets. Section 6 gives the conclusions.

2 Related work

An interesting method for discoveringrepresentative trendsin time series using so-calledsketches
was proposed by Indyk et. al. [IKM00]. A representative trend is a section of the time series itself
that has the smallest sum of “distances” fromall other sections of the same length. The proposed
method employs random projections [JL84] for dimensionality reduction and FFT to quickly compute
the sum of distances. However, it cannot be applied to semi-infinite streams, since each section has to
be compared to all others.

Recent work by Gilbert et. al. [GKMS01] uses wavelets to compress the data into a fixed amount
of memory, by keeping track of the largest Haar wavelet coefficients and updating them on-line (in
the following, we will use the nameIncremental DWTor IncDWT for short). The work in [GGI+02a]
presents this in the context of piecewise-constant histogram maintenance (see also [GKS02]). Also,
[GGI+02b] presents a novel method for approximate estimation of the largest Fourier coefficients by
sampling only a portion of the series and proves bounds based on the uncertainty principle. However,
all the above methods do not try to discover patterns and trends in the data. Thus, they cannot compete
directly with our proposed method, which employs agenerativemodel for pattern and trend detection.
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More recently, Garofalakis et. al. [GG02] presented an approach for accurate data compression
usingprobabilistic wavelet synopses. However, this method has an entirely different focus and cannot
be applied to semi-infinite streams.

Further work on streams focuses on providing exact answers to pre-specified sets of queries using a
minimum amount of memory. Arvind et. al. [ABB+02] study the memory requirements of continuous
queries overrelationaldata streams. Datar et. al. [DGI+02] keepexactsummary statistics and provide
theoretical bounds in the setting of a bitstream.

There is also some recent work on approximate answers to various types of continuous queries.
Gehrke et. al. [GKS01] presents a comprehensive approach for answering correlated aggregate queries
(e.g., “find points below the (current) average”), using histogram summaries to approximate aggre-
gates. Dobra et. al. [DGGR02] present a method for approximate answers to aggregate multi-join
queries over several streams, by using random projections and boosting.

Finally, a comprehensive system for linear regression on multi-dimensional time series data was
presented very recently in [CDH+02]. Although this framework employs varying resolutionsin time,
it does so by straight aggregation, using pre-specified aggregation levels (although the authors discuss
the use of a geometric progression of time frames) and can only deal with linear trends, using straight
linear regression (as opposed to auto-regression).

2.1 Previous approaches

None of the continuous querying methods deal with pattern discovery and forecasting. The typical
method for forecasting (i.e., generative time series modeling) uses the traditionalauto-regressive (AR)
models or their generalizations,auto-regressive moving average (ARMA), auto-regressive integrated
moving average (ARIMA)andseasonal ARIMA (SARIMA)—see Appendix A. Although popular, these
methods fail to meet many of the requirements listed in the introduction. The most important fail-
ure is that they need human intervention and fine-tuning. As mentioned in statistics textbooks such
as [BD91]:

“The first step in the analysis of any time series is to plot the data. [...] Inspection of
a graph may also suggest the possibility of representing the data as a realization of [the
‘classical decomposition’ model].”

Thus, such methods are not suited for remote, unsupervised operation. Furthermore, these methods
have a number of other limitations:

• Existing methods for fitting models are typically batch-based, that is, they do not allow for
recursive update of model parameters.

While recursive least squares is effective in solving this problem for AR models, it does not
generalize to handle the more general class of ARMA models.

• Established methods for determining model structure (i.e., period of seasonal components and
order of the ARIMA model) are at best computationally intensive, besides not easy to automate.

• If there are non-sinusoidal periodic components, ARIMA models will miss them completely,
unlessspecificallyinstructed to use a large window (for instance, Mother’s day traffic will not
be captured with a window less than 365 days long).
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Large window sizes introduce further estimation problems, both in terms of resource require-
ments as well as accuracy. SARIMA models provide a workaround, but can deal only with one
or, at best, a fewpre-determined, constantperiods.

• In addition, ARIMA models do not do a good job of handling “bursty” time series. ARIMA’s
linear difference equations eventually lead to to sinusoidal signals of constant or exponentially
decreasing amplitude (or mixtures thereof). Thus, it can not generate signals with strong bursts,
like, e.g., disk traffic [WMC+02] or LAN traffic [RMSCB99], even when these bursts are re-
occurring (in fact, such bursts may even lead to exponential divergence in a generated sequence).

While GARCH models introduced by [Bol86] provide a means of modeling the class of bursty
white noisesequences, and a combined SARIMA-GARCH model can indeed model bursty time
series with seasonal components, the computational difficulties involved with such models are
far greater than those for the SARIMA models.

Recently, the ARIMA model has been extended toARFIMA (auto-regressive fractionally inte-
grated moving average), which handles the class ofself-similarbursty sequences (such asFrac-
tional Gaussian Noise[Ber94]). However, ARFIMA and its generalizations are even harder than
ARIMA to use and require human expert intervention to determine yet another coefficient, the
Hurst exponent[CB96].

All the above methods deal with linear forecasting. Non-linear modeling, using chaos and fractals,
has been attracting increasing interest [WG94]. However, these methods also require the intervention
of a human to choose the appropriate windows for (non-linear) regression or to configure an artificial
neural network.

Data streams are essentiallysignals. There is a huge body of work in the signal processing liter-
ature related to compression and feature extraction. Typical tools include the Fast Fourier Transform
(FFT) [OS75], as well as the Discrete Wavelet Transform (DWT) [PW00]. However, most of the algo-
rithms (a) deal withfixed lengthsignals of sizeN , and (b) cannot do forecasting (i.e., do not employ a
generativemodel).

Thus the authors believe that there is a need (see also Table 2) for straightforward methods of time
series model building which can be applied in real-time to semi-infinite streams of data, using limited
memory.

3 Background material

In this section we give a very brief introduction to the most relevant background material (the appen-
dices contain some further information).

3.1 Auto-regressive modeling

Auto-regressive models (also known as theBox-Jenkins method[BJR94]) are the most widely used. A
more complete enumeration of AR models can be found in Appendix A. The main idea is to express
Xt as a function of its previous values, plus (filtered) noiseεt:

Xt = φ1Xt−1 + . . . + φW Xt−W + εt (1)
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Symbol Definition

Xt Stream value at time tickt = 0, 1, . . ..
N Number of pointsso far from {Xt}.
Wl,t Wavelet coefficient (levell and timet).
Vl,t Scaling coefficient (levell and timet).
βδl,δt AWSOM coefficient,(δl, δt) ∈ D).
D Window offsets forAWSOM (window “size” is|D|).
AWSOMλ(n0, . . . , nλ) Number of level offsets (λ) and offsets per level (n0, . . . , nλ)

in D—see Definition 2. (n0, . . . , nλ) is also called the
AWSOM order.

NΛ, Λ, T Parameters that determine the number of equations in the full
model,AWSOMΛ,T (n0, . . . , nλ)—see Definition 3.

Table 1: Symbols and definitions.

whereW is a window that is determined by trial and error, or by using a criterion that penalizes model
complexity (i.e., large values ofW ), like theAkaike Information Criterion (AIC).

AR(I)MA requires manual preprocessing by trained statisticians to remove trends and seasonal-
ities, typically by visual inspection of the sequence itself, as well as itsAuto-Correlation Function
(ACF).

3.2 Recursive least squares

Recursive Least Squares(RLS) is a method that allows dynamic update of a least-squares fit. Updates
can be done inO(k2) time and space, wherek is the number of regression variables. More details are
given in Appendix C and in [You84].

3.3 Wavelets

TheN -point discrete wavelet transform (DWT)of a lengthN time sequence givesN wavelet coef-
ficients. Each coefficient is responsible for a frequency range within a time window (the higher the
frequency, the smaller the time window). Figure 1 shows thescalogram, that is, the “map” of the
magnitude of each wavelet coefficient versus the location in time and frequency it is “responsible” for.

The DWT of a sequence can be computed inO(N) time. Furthermore, as new points arrive, it
can be updated inO(1) amortized time. This is made possible by the structure of the decomposition
into time and frequency (explained shortly) which is unique to wavelets. For instance, the Fourier
transform also decomposes a signal into frequencies (i.e., sum of sines), but requiresO(N lg N) time
to compute and cannot be updated as new points arrive. A brief introduction to the wavelet transform
can be found in Appendix B.

For our purposes here, we shall restrict ourselves to wavelets of the Daubechies family, which
are easy to compute (even in the case of infinite streams), have desirable smoothness properties and
successfully compress many real signals. In practice, although by far the most commonly used (largely
due to their simplicity), Haar wavelets are too unsmooth and introduce significant artifacting [PW00].
In fact, unless otherwise specified, we use Daubechies-6.
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Figure 1: Haar bases and correspondence to time/frequency (for signal lengthN = 16). Each wavelet
coefficient is a linear projection of the signal to the respective basis.

Incremental wavelets This part is a very brief overview of how to compute the DWT incrementally.
This is the main idea of IncDWT [GKMS01], which uses Haar wavelets. In general, when using a
wavelet filter of lengthL, the wavelet coefficient at a particular level is computed using theL cor-
responding scaling coefficients of the previous level. Recall thatL = 2 for Haar, andL = 6 for
Daubechies-6 that we typically use. Thus, we need to remember the lastL − 1 scaling coefficients at
each level. We call these thewavelet crest.

Definition 1 (Wavelet crest). Thewavelet crestat timet is defined as the set of scaling coefficients
(wavelet smooths) that need to be kept in order to compute the new wavelet coefficients whenXt

arrives.

Lemma 1 (DWT update). Updating the wavelet crest requires space(L−1) lg N+L = O(L lg N) =
O(lg N), whereL is the width of the wavelet filter (fixed) andN the number of values seen so far.

Proof. See [GKMS01]. Generalizing to non-Haar wavelets and taking into account the wavelet filter
width is straightforward.

3.3.1 Wavelet properties

In this section we focus on some of the properties of the DWT which are relevant toAWSOM.

Time/frequency decomposition Notice (see scalogram in Figure 1) that higher level coefficients are
highly localized in time, but involve uncertainty in frequency and vice-versa. This is afundamental
trade-off of any time/frequency representation and is a manifestation of theuncertainty principle,
according to which localization in frequencies is inversely proportional to localization in time. This
is a fundamental principle that implies certain trade-offs inany method! When dealing with semi-
infinite streams in limited memory, we unavoidably need to make certain trade-offs. Given this, the
wavelet representation is an excellent choice: it “compresses” well many real signals, while it is fast
to compute and can be updated online.
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Contin. Trends / Auto-
Method Streams Forecast matic Memory
DFT (N -point) NO NO — —
SWFT (N -point) YES(?) NO — —

DWT (N -point) NO NO — —
IncDWT [GKMS01] YES NO — —

Sketches [IKM00] NO YES(?) — —

AR / ARIMA YES YES NO [BJR94] W 2

AWSOM YES YES YES m|D|2

Table 2: Comparison of methods.

Wavelets and decorrelation A wavelet transform using a wavelet filter of length2L can decorrelate
only certain signals, assuming theirL-th order (or less) backward difference is a stationary random
process [PW00]. For real signals, this value ofL is not known in advance and may be impractically
large: the space complexity of computing new wavelet coefficients isO(L lg N)—see Lemma 1.

Wavelet variance One further benefit of using wavelets is that they decompose the variance across
scales. Furthermore, the plot of log-power versus scale can be used to detect self-similar components
(see Appendix B.1 for a brief overview).

4 Proposed method

In this section we introduce our proposed model.

4.1 Intuition behind our method

What equations should we be looking for to replace ARIMA’s (see Equation 1)? In particular, how can
we capture periodic components of arbitrary period?

First part—information representation As explained in section 3.3.1, given our limited resources,
we have to make a choice about how to efficiently and effectively capture the important information
in the sequence. Traditional models (such as ARIMA) operate directly in the time domain. Thus, they
cannot deal with redundancies, seasonalities, long-range behavior, etc. This is where a human expert is
needed to manually detect these phenomena and transform the series to match ARIMA’s assumptions.

This is a crucial choice—is there a better one? We want a powerful and flexible representation
that can adapt to the sequence, rather than expect someone to adapt the sequence to the represen-
tation. Wavelets are extremely successful in compressing most real signals, such as voice and im-
ages [Fal96, Fie93, PTVF92], seismic data [ZdZ98], biomedical signals [Aka97] and economic time
sequences [GSW01].

By using wavelet coefficients, we immediately discard many redundancies (i.e., near-zero valued
wavelet coefficients) and focus on the things that really matter. Furthermore, the DWT can be com-
puted quickly and updated online.
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Figure 2:AWSOM—Intuition and demonstration.AWSOM captures intra- and inter-scale correla-
tions. Also, the left figure demonstrates why we fit different models per level.

Second part—correlation structure In the wavelet domain, how can we capture arbitrary periodic-
ities? The answers come from the properties of the DWT. A periodic signal (even a spike train—e.g.,
Mother’s day traffic), will have high absolute values for the wavelet coefficients at the scales that corre-
spond to its frequency. Even more, successive coefficients on the same level should have related values
(see Figure 2, left). Thus, in order to capture periodic components, we should look for correlations
between wavelet coefficients within the same level.

Furthermore, how should we capture bursts? Short bursts carry energy in most frequencies. There-
fore wavelet coefficients across different scales (i.e., frequencies) will have large values (see Figure 2,
middle). If the phenomenon follows some pattern, then it is likely that there will be an inter-scale
correlation among several of the wavelet coefficients.

Third part—correlation modeling The last question we need to answer is: what type of regression
models should we use to quantify these correlations? Our proposed method tries to capture inter- and
intra-scale correlations by fitting a linear regression model in the wavelet domain. These can also be
updated online with RLS.

To summarize, we have argued for using the wavelet representation of the series and capturing
correlations within and across scales (see Figure 2, right). We have “substituted,” in effect, the hu-
man expert with the DWT and this correlation structure. Thus, we expect that linear regression will
successfully capture these correlations withvery fewcoefficients.
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UpdateCrest (X[t]):
Foreachl ≥ 0 s.t.2l dividest:

ComputeV [l, t/2l]
If 2l+1 dividest:

ComputeW [l, t/2l+1]
DeleteW [l, t/2l+1 − L]

Update (X[t]):
UpdateCrest(X[t])
Foreach new coefficientW [l, t′] in the crest:

Find the linear model it belongs to
based onl andt′ mod Λ

UpdateXT X andXT y for this model

Figure 3: High-level description of update algorithms.

4.2 AWSOM modeling

Formally, our proposed method tries to fit models of the following form:

Wl,t = β0,1Wl,t−1 + β0,2Wl,t−2 + . . .
β1,0Wl−1,t/2+ β1,1Wl−1,t/2−1 + . . .

β2,0Wl−2,t/4+ . . .

. . .

or more concisely (whereεl,t is the usual error term)

Wl,t =
∑

(δl,δt)∈D

βδl,δtWl+δl,t/2δl−δt + εl,t (2)

whereD is a set of index offsets. Theβδl,δt are called theAWSOM coefficients.

Definition 2 (AWSOM order). The set of offsets is always of the form

D = { (0, 1), (0, 2), . . . , (0, n0),

(1, 0), (1, 1), (1, 2), . . . , (1, n1 − 1),

. . . ,

(λ, 0), . . . , (λ, nλ − 1) }

i.e., each wavelet coefficient is expressed as a function of the previousn0 wavelet coefficients on the
same level,n1 coefficients from one level below and so on. For a particular choice ofD, we use
AWSOMλ(n0, . . . , nλ) or simply

AWSOM(n0, n1, . . . , nλ)

to denote this instance of our model. We call(n0, . . . , nλ) theorderof theAWSOM model. Thetotal
orderis the number ofAWSOM coefficientsk per equation, i.e.,k =

∑λ
δl=0 nδl.

A fixed choice ofD is sufficient for all signals. In most of our experiments we useAWSOM(6, 4, 2)
(k = 12).

The naive approach would be to fit Equation 2 toall data points (i.e., wavelet coefficients). How-
ever, an approach that gives more accurate results is to fit one equation per level (see Figure 2), as long
as the level contains enough wavelet coefficients to get a good fit. Thus, in actual use on a running
stream, we would fit one equation for every levell < Λ, whereΛ is the level that has no more than,
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Figure 4: Illustration ofAWSOM2,2(1, 1) with NΛ = 2. The shade of each wavelet coefficient
corresponds to the model equation used to “predict” it. The unshaded wavelet coefficients correspond
to initial conditions (i.e., with incompleteAWSOM windowD).

say,NΛ = 16 wavelet coefficients. For levelsl ≥ Λ we can either keep the exact wavelet coefficients
(which would be no more than16 + 8 + · · ·+ 1 = 31 in the above case) and/or fit one more equation.
Thus, as more data points arrive, the value ofΛ gradually increases as necessary.

Besides fitting one equation per level (up toΛ), when we useAWSOMλ with λ ≥ 1, we also
fit different equations depending on time locationt. For instance, if we are usingAWSOM1(n0, 2),
we should fit one equation for pairsWl,2t andWl−1,t and another for pairsWl,2t+1 andWl−1,t (see
Figure 4). In general, we need2λ separate models to ensure that the inter-scale correlationsλ levels
down are not “shoehorned” into the same regression model.

To summarize, the fullAWSOM model fits a number of equations:

Wl,t =
∑

(δl,δt)∈D

βl′,t′

δl,δtWl+δl,t−δtεl,t (3)

wherel′ ≡ min(l,Λ) andt′ ≡ t mod T . For example, ifT = 2 andΛ = 1, we estimate one linear
equation for each set of wavelet coefficientsW0,2i, W0,2i+1, Wl,2i andWl,2k+1 (l ≥ 1, i ≥ 0). The
significant advantage of this approach is that we can still easily update theAWSOM equations online,
as new data values arrive. This is possible because the equation is selected based only onl andt for
the new wavelet coefficient (see also Figure 3).

Definition 3. For the full model described above, we use the notation

AWSOMΛ,T (n0, n1, . . . , nλ)

The number of equationsm is simplym = ΛT .

The value ofΛ depends onN and the value ofT is fixed and depends only onλ. In general, we
automaticallypick the following values:

T ∼ 2λ and Λ ∼ lg
N

NΛT
= lg N − lg NΛ − λ

10



ModelSelection:
For each linear model:

Estimate SSR of complete model
For each subset of regression variables:

Compute SSR of reduced model
from 3

Estimate probability that reduction
in variance is not due to chance

Select the subset of variables with
highest probability (or keep all
if not within 95% confidence interval)

Figure 5: High-level description of basic selection algorithm.

4.3 Model selection

When fitting a linear model, as we increase the number of variables (or, in the context of forecasting, as
we increase the window size), we expect in general to get a better fit. However, what we would really
like to find are those variables that have astatistically significantcontribution to the output value (or,
forecast). The reasons for this are twofold:

• Over-fitting the data may result in a good approximation of the past, but a number of the correla-
tions may in reality be due to noise and not carry over well in forecasts of the future. Therefore,
by picking only theimportantvariables, we improve accuracy.

• More importantly, in the pattern-mining context, we want to filter out the effects of noise and
present only those patterns that are important to the user.

More details on model selection are given in Appendix D (see also Figure 5).
Model selection and combination needs to be done when interpreting the models; processing on the

sensor is possible, but not necessary. In fact, all operations can be performed usingonly data gathered
online and time complexity isindependentof the stream size. The only thing that needs to be decided
in advance is the largestAWSOM(n0, . . . , nλ) order we may want to fit. From the data collected, we
can then automatically select any model of smaller order (AWSOM(n′0, . . . , n

′
λ′), whereλ′ ≤ λ and

n′i ≤ ni).

4.4 Complexity

In this section we show that our proposedAWSOM models can be easily estimated with a single-
pass, “any-time” algorithm. From Lemma 1, estimating the new wavelet coefficients requires space
O(lg N). In fact, since we typically use Daubechies-6 wavelets (L = 6), we need to keep exactly
5 lg N + 6 values. TheAWSOM models can be dynamically updated using RLS.

Lemma 2 (Logarithmic space complexity).Maintaining the model requiresO(lg N + mk2) space,
whereN is the length of the signal so far,k is the number ofAWSOM coefficients in each equation
andm the number of equations.

11



Dataset Size Description

Triangle 64K Triangle wave (period 256)
Mix 256K Square wave (period 256)

plus sine (period 64)
Impulses 64K Impulse train (every 256 points)
ARFIMA 2K Fractionally differenced ARIMA

(R packagefracdiff ).

Sunspot 2K Sunspot data
Disk 2K Disk access trace (from

Hewlett-Packard)
Automobile 32K Automobile traffic sensor trace

from large Midwestern state

Table 3: Description of datasets (sizes are in number of points, 1K=1024 points).

Proof. Keeping the wavelet crest scaling coefficients requires spaceO(lg N). If we use recursive least
squares, we need to maintain ak × k matrix for each of them equations in the model.

Auto-regressive models with a comparable window size need spaceO(m2k2), since the equivalent
fair window size isW ≈ mk. Here, “fair” means that the number of total number ofAWSOM
coefficients plus the number of initial conditions we need to store is the same for both methods. This is
the information that comprises the data synopsis and that would have to be eventually communicated.
However, the device gathering the measurements needs extra storage space in order to update the
models. The latter is, in fact,muchlarger for AR than forAWSOM (see Figure 6). Thus this definition
of equivalent window actually favors AR.

Theorem 1 (Time complexity). Updating the model when a new data point arrives requiresO(k2)
time on average, wherek is the number ofAWSOM coefficients in each equation.

Proof. On average, the wavelet crest scaling coefficients can be updated inO(1) amortized time. Al-
though a single step may requireO(lg N) time in the worst case, on average, the (amortized) time
required isO(

∑n
i=0 B(i)/N) = O(1) (whereB(i) is the number of trailing zeros in the binary repre-

sentation ofi)1.
Updating thek × k matrix for the appropriate linear equation (which can be identified in O(1),

based on levell and ont modT ), requires timeO(k2).

Once again, auto-regressive models with a comparable window size need timeO(m2k2) for each
update.

Corollary 1 (Constant-time update). When the model parameters have been fixed (typicallyk is a
small constant≈ 10 andm ∼ lg N ), the model requires spaceO(lg N) and amortized timeO(1) for
each update.

1Seen differently,IncDWT is essentially an pre-order traversal of the wavelet coefficient tree.
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Figure 6: Memory space requirements: Space needed to keep the models up-to-date (AWSOM and
AR with equivalent, fair window size.

5 Experimental evaluation

We comparedAWSOM against standard AR (with the equivalent, fair window size—see Section 4.4),
as well as hand-tuned (S)ARIMA (wherever possible). Our prototypeAWSOM implementation is
written in Python, using Numeric Python for fast array manipulation. We used the standardts package
from R (version 1.6.0—seehttp://www.r-project.org/ ) for AR and (S)ARIMA models. We
illustrate the properties ofAWSOM and how to interpret the models using synthetic datasets and then
show how these apply to real datasets (see Table 3).

Only the first half of each sequence was used to estimate the models, which were then applied to
generate a sequence of length equal to that of theentiresecond half. For AR and (S)ARIMA, the last
values (as dictated by the window size) of the first half were used to initiate generation. ForAWSOM
we again used as many of the last wavelet coefficients from each DWT level of the first half as were
necessary to start applying the model equations. We should note that generating more than, say, 10
steps ahead is very rare: most methods in the literature [WG94] generate one step ahead, then obtain
the correct value ofXt+1, andonly thentry to generateXt+2. Nevertheless, our goal is to capture
long-term behavior andAWSOM achieves this efficiently, unlike ARIMA.

5.1 Interpreting the models

Visual inspection A “forecast” is essentially a by-product of anygenerativetime series model: ap-
plication of any model to generate a number of “future” values reveals precisely the trends and patterns
captured by that model. In other words, synthesizing points based on the model is the simplest way
for any user to get a quick, yet fairly accurate idea of what the trends are or, more precisely, what
the modelthinks they are. Thus, what we expect to see (especially in a long-range forecast) is the
importantpatterns that can be identified from the real data.

However, an expert user can extract even more precise information from the models. We will now
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Figure 7:Disk andARFIMAdatasets.

explain how the “AWSOM language” can be fully interpreted.

Variance test As explained in Appendix B.1, if the signal is self-similar, then the plot of log-power
versus scale is linear.

Definition 4 (Variance diagnostic). We call the log-power vs. scale plot thewavelet variance diag-
nostic plot(or just variance diagnostic). In particular, we use the correlation coefficientρα to quantify
the relation. If the plot is linear (in a range of scales), the slopeα̂ is theself-similarity exponent
(−1 < α < 0, closer to zero the more bursty the series).

A large value of|ρα|, at least across several scales, indicates that it the series component in those
scales may be modeled using a fractional noise process with parameter dictated byα (seeAutomo-
bile dataset). However, we should otherwise be careful in drawing further conclusions about the
behavior within these scales.

We should note that after the observation by [LTWW94], fractional noise processes and, in gen-
eral, self-similar sequences have revolutionized network traffic modeling. Furthermore, self-similar se-
quences appear in atomic clock fluctuations, river minima, compressed video bit-rates [Ber94, PW00],
to mention a few examples.

Wavelet variance (energy and power) The magnitude of variance within each scale serves as an
indicator about which frequency components are the dominant ones in the sequence. To precisely
interpret the results, we also need to take into account the fundamental uncertainty in frequencies (see
Figure 15). However, the wavelet variance plot quickly gives us the general picture of important trends.
Furthermore, it guides us to focus onAWSOM coefficients around frequencies with large variance.

AWSOM coefficients Regardless of the energy within a scale, theAWSOM coefficients provide
further information about the presence of trends in the signal, which cannot be deduced from the
variance plots. In particular:
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Figure 8: Wavelet variance diagnostic.

• Large intra-scale coefficients: These capture patterns at certain frequencies, regardless of the
contribution of these frequencies to overall energy. Furthermore, if the coefficients are not the
same for all regression models at the same level, this is an indication of “seasonalities” within
that scale and capture a different type of information about larger frequencies.

• Large inter-scale coefficients: These occur when there are repeated bursts in the series. The
number of scales with large inter-scale coefficients depends on the duration of the bursts (short
bursts have large bandwidth).

To summarize, the steps are:

• Examine the variance diagnostic to identify sub-bands that correspond to a self-similar compo-
nent. These may be modeled using a fractional noise process, but otherwise we cannot say much
more.

• Examine the wavelet and energy and power spectrum to quickly identify important sub-bands.

• ExamineAWSOM coefficients, primarily within and around the sub-bands identified during the
second step.

5.2 Synthetic datasets

We present synthetic datasets to illustrate the basic properties ofAWSOM, its behavior on several
characteristic classes of sequences, and the principles behind interpreting the models. Applying the
models to generate a number of “future” data points is the quickest way to see if each method captures
long-term patterns.

ARFIMA. This is a synthetic dataset of a fractional noise process, which illustrates the first point
aboutAWSOM model interpretation. As seen in Figure 8, this exhibits a clearly linear relationship in
the wavelet variance plot. The estimated fractional differencing (“burstiness”) parameterδ̂ ≡ −α̂/2 ≈
0.24 is close to the actual parameter used (δ = 0.3). It is clear that no periodic component is present
in this series.

Triangle . AR fails to capture anything, because the window is not large enough. SAR esti-
mation (with no differencing, no MA component and only a manually pre-specified lag-256 seasonal
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Figure 9: Forecasts—synthetic datasets. Note that AR gives the wrong trend (if any), while seasonal
AR fails to complete.
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Figure 10: Forecasts—real datasets. Note that AR fails to detect any trend, while seasonal AR either
fails to complete or gives a wrong conclusion (decaying trend, fixed period) in260× time.

component) fails completely. In fact, R segfaults after several minutes, even without using maximum-
likelihood estimation (MLE). However,AWSOM captures the periodicity. TheAWSOM model visu-
alization is similar to that forMix .

Mix . Once again, AR is confused and does not capture even the sinusoidal component. SAR
estimation (without MLE) fails (R’s optimizer returns an error, after several minutes of computation).
Figure 14 shows theAWSOM coefficients. We show only the levels that correspond to significant
variance. These illustrate the first point in the interpretation ofAWSOM coefficients. We clearly see
strong correlations in levels 6 and 8 (which correspond to the periods26 = 64 and28 = 256 of the
series components). Note that the variance alone (see also Figure 15) is not enough to convey this
information.

Impulses . Once again, AR fails to capture anything and SAR estimation fails. AR fails because
the window is too small. However,AWSOM captures the overall behavior. Figure 14 illustrates the
second point in the interpretation ofAWSOM coefficients. We clearly see repeated presence of bursts,
with strong inter-scale correlations acrossall levels up to the impulse “period” (since the bursts have
width one). We show those levels that correspond to the bursts. At level 5, information from the
impulse “period” begins to enter in the wavelet coefficients (see also Figure 15). After level 7, the
inter-scale correlations diminish in significance and the interpretation is similar to that forMix .

We should mention that we tried SAR(0)×(1)128 on an impulse train of period 128. On a sequence
with 1024 points, R takes over 4 minutes (on a signal with 64K points it did not complete in over one
hour). However,AWSOM estimates the parameters (with 64K points) in approximately 50 seconds,
although our prototype is implemented in Python.
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5.3 Real datasets

For the real datasets, we show the so-called marginal distributionquantile-quantile plots(or Q-Q
plots—see Figure 12 and Figure 11). These are the scatter plots of(x, y) such thatp% of the values
are belowx in the real sequence and belowy in the generated sequence. When the distributions are
identical, the Q-Q plot coincides with the bisector of the first quadrant.

Sunspot . This dataset is well-known and it has a time-varying period. AR again fails completely.
SAR (without a MA component, much less MLE) takes 40 minutes to estimate.AWSOM (in Python)
takes less than 9 seconds. SAR gives a completely fixed period, captures a false downward trend and
misses the marginal distribution (see Figure 12). On the other hand,AWSOM captures the general
periodic trend, with a desirable slight confusion about the period (since the period is varying and thus
un-predictable).

Automobile . This dataset has a strongly linear variance diagnostic in scales 1–6 (Figure 8).
However, the lower frequencies contain the most energy, as can be seen in the variance plot (Figure 13.
This is an indication that we should focus at these scales. The lowest frequency corresponds to a daily
periodicity (approximately 4000 points per day, or about 8 periods in the entire series) and next highest
frequency corresponds to the morning and afternoon rush-hour.

In this series, low frequencies can be modeled by fractional noise. Figure 11 shows a generated
sequence with fractional noise, as identified byAWSOM. The fractional difference parameter is
estimated aŝδ ≡ −α̂/2 ≈ 0.276 and the amplitude is chosen to match the total variance in those
scales.

However, for unsupervised outlier detection, this is not necessary: what would really constitute
an outlier would be, for instance, days that (a) do not follow the daily and rush-hour patterns, or (b)
whose variance in the fractional noise scales is very different. This can be captured automatically by
the series components in the appropriate frequency sub-bands thatAWSOM identifies as a periodic
component and self-similar noise, respectively.

Disk . This is a very difficult data set to characterize (even by humans). It exhibits a linear
variance diagnostic (see Figure 8) acrossall scales. Therefore, the regression models are of little use
in this case. However, from the variance plot, we see moderate spikes at frequencies that correspond
to daily periodicities (48 points per day) and, to a lesser extent, weekly periodicities. However, the
presence in those frequencies is fairly week and the points (2K) are too few tosafelydraw any further
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conclusions;AWSOM provides the necessary information to judge what conclusions can be drawn.
Both AR and SAR (with a hand-picked lag of 48 to capture the daily periods) fail completely and do
not even provide a hint about the weak (compared to the bursts) periodic components.
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6 Conclusions

Sensor networks are becoming increasingly popular, thanks to falling prices and increasing storage and
processing power. In this work we presentedAWSOM (Arbitrary-Window Stream mOdeling Method).
Our method is the only one that achieves all our goals:(1) Unsupervised operation:once we decide
the largestAWSOM order we want, no further intervention is needed: the sensor can be left alone
to collect information.(2) ‘Any-time’, one-passalgorithm to incrementally update the patterns.(3)
Automaticdetection of periodic components with arbitrary period.(4) Limited memory:our method
requiresO(lg N) memory (whereN is the length of the sequence so far).(5) Simplicity: AWSOM
provides linear models which have a straightforward interpretation.(6) Power: AWSOM provides
information across several frequencies and can diagnose self-similarity and long-range dependence.
(7) Immediate outlier detection:our method, despite its simplicity and its automatic, unsupervised
operation, is nevertheless able to do forecasting. It can do so directly, for the estimated model. We
showed real and synthetic data, where our method captures the periodicities and burstiness of the input
sequence, while the traditional ARIMA method fails completely.

AWSOM is an important first step toward successful, hands-off data mining in infinite streams,
combining simplicity with modeling power. Continuous queries are useful for evidence gathering
and hypothesis testingoncewe know what we are looking for.AWSOM is the first method to deal
directly with the problem of automatic, unsupervised stream mining and pattern detection and fill the
gap. Among the many future research directions, the most promising seems to be the extension of
AWSOM to multiple, co-evolving time sequences, beyond MUSCLES [YSJ+00] and multi-variate
ARIMA.
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bile traffic datasets.
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A Auto-regressive modeling

The simplest form, an auto-regressive model of orderp orAR(p), expressesXt as a linear combination
of previous values, i.e.,Xt = φ1Xt−1 + · · ·+ φpXt−p + εt or, more concisely

φ(L)Xt = εt
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whereL is the lag operator andφ(L) is a polynomial defined on this operator:

LXt ≡ Xt−1

φ(L) = 1− φ1L− φ2L
2 − · · · − φpL

p

andεt is a white noise process, i.e.,

E[εt] = 0 and Cov[εt, εt−k] =

{
σ2 if k = 0
0 otherwise

Using least-squares, we can estimateσ2 from the sum of squared residuals (SSR). This is used as a
measure of estimation error; when generating “future” points,εt is set to its expected value,E[εt] ≡ 0.

The next step up are auto-regressive moving average models. AnARMA(p, q) model expresses
valuesXt as

φ(L)Xt = θ(L)εt

whereθ(L) = 1− θ1L− · · · − θqL
q. Estimating the moving average coefficientsθi is fairly involved.

State of the art methods use maximum-likelihood (ML) algorithms, employing iterative methods for
non-linear optimization, whose computational complexity depends exponentially onq.

ARIMA(p, d, q) models are similar toARMA(p, q) models, but operate on(1 − L)dXt, i.e., the
d-th order backward difference ofXt:

φ(L)(1− L)dXt = θ(L)εt

Finally, SARIMA(p, d, q)×(P,D,Q)T models are used to deal with seasonalities, where:

φ(L)Φ(LT )(1− L)d(1− LT )DXt = θ(L)Θ(LT )εt

where the seasonal difference polynomials

Φ(LT ) = 1− Φ1L
T − Φ2L

2T − · · · − ΦP LPT

Θ(LT ) = 1−Θ1L
T −Θ2L

2T − · · · −ΘQLQT

are similar toφ(L) andθ(L) but operate on lags that are multiples of a fixed periodT . The value ofT
is determined purely by trial and error, or by utilizing prior knowledge about the seriesXt.

B Discrete Wavelet Transform

Wavelets are best introduced with the Haar transform, because of its simplicity. At each levell of the
construction we keep track of two sets of coefficients, each of which “looks” at a time window of size
2l:

• Wl,t: Thesmoothcomponent, which consists of theN/2l scaling coefficients. These capture the
low-frequency component of the signal; in particular, the frequency range[0, 1/2l].

• Vl,t: Thedetail component, which consists of theN/2l wavelet coefficients. These capture the
high-frequency component; in particular, the frequency range[1/2l, 1/2l−1].
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Figure 15: Daubechies-6 cascade gain (levels 3–5).

The construction starts withV0,t = Xt andW0,t is not defined. At each iterationl = 1, 2, . . . , lg N
we perform two operations onVl−1,t to compute the coefficients at the next level:

• Differencing, to extract the high frequencies:

Wl,t = (Vl−1,2t − Vl−1,2t−1)/
√

2

• Smoothing, by averaging2 each consecutive pair of values to extract the low frequencies:

Vl,t = (Vl−1,2t + Vl−1,2t−1)/
√

2

We stop whenWl,t consists of one coefficient (which happens atl = lg N+1). The scaling coefficients
are needed only during the intermediate stages of the computation. The final wavelet transform is the
set of all wavelet coefficients along withVlg N+1,0. Starting withVlg N+1,0 (which is also referred to as
the signal’s scaling coefficient) and following the inverse steps, we can reconstruct eachVl,t until we
reachV0,t ≡ Xt.

Figure 1 illustrates the final effect for a signal withN = 16 values. Each wavelet coefficient is the
result of projecting the original signal onto the corresponding basis signal.

In general, there are many wavelet transforms, but they all follow the pattern above: a wavelet
transform uses a pair of filters, one high-pass and one low-pass. In the case of the Haar transform
Different wavelet families (e.g., Coiflets, least-asymmetric, to mention a few) achieve different trade-
offs with respect to (un)smoothness of the projections, phase shift properties, etc [PW00].

2The scaling factor of1/
√

2 in both the difference and averaging operations is present in order to preserve total signal
energy (i.e., sum of squares of all values).
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Frequency properties Wavelet filters employed in practice can only approximate an ideal bandpass
filter, since they are offinite lengthL. This is an unavoidable consequence of the uncertainty principle.
The practical implications are that wavelet coefficients at levell correspond roughly to frequencies
[1/2l+1, 1/2l] (or, equivalently, periods[2l, 2l+1] (see Table 4 and Figure 15 for the actual correspon-
dence). This has to be taken into account forpreciseinterpretation ofAWSOM models.

B.1 Wavelet variance and self-similarity

The wavelet variance decomposes the variance of a sequence across scales. Here we mention the
definitions and basic facts; details can be found in [PW00].

Definition 5 (Wavelet variance). If {Wl,t} is the DWT of a series{Xt} then the wavelet varianceVl

is defined as
Vl = Var[Wl,t]

Under certain general conditions

V̂l =
2l

N

N/2l∑
t=1

Wl,t

is an unbiased estimator ofVl. Note that the sum is precisely the energy of{Xt} at scalel.

Definition 6 (Self-similar sequence).A sequence{Xt} is said to be self-similar following a pure
power-law process if

SX(f) ∝ |f |α

where−1 < α < 0 andSX(f) is the SDF3

It can be shown that

Vl ≈ 2
∫ 1/2l

1/2l+1

SX(f)df

thus if{Xt} is self-similar, then
logVl ∝ l

i.e., the plot oflogVl versus the levell should be linear. In fact, slope of the log-power versus scale
plot should be approximately equal to the exponentα. This fact and how to estimateVl are what the
reader needs to keep in mind.

3The spectral density function (SDF)is the Fourier transform of the auto-covariance sequence (ACVS)SX,k ≡
Cov[Xt, Xt−k]. Intuitively, it decomposes the variance into frequencies.

Periods
Ideal Non-zero Dominant Peak

4 16–32 11–45 14–28 23
5 32–64 23–109 29–57 45
6 64–128 41–205 58–111 91
7 128–256 157–440 111–212 181

Table 4: Frequency information content of Daubechies-6 wavelet coefficients per level.
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C Recursive Least Squares (RLS)

Let us assume thatX is anm× k matrix ofm measurements (one set ofk input variables per row),b
is thek× 1 vector of regression coefficients andy them× 1 vector of outputs. The LS solution to the
overdetermined systemXb = y is the solution of

XT Xb = XTy (4)

When a new vectorxm+1 and outputym+1 arrive, we can update thek × k projection matrixXT X
by adding the outer productxm+1xT

m+1 to it. Similarly, we can updateXTy by addingym+1xm+1.
Since all we need for the solution are

P ≡ XT X and q ≡ XTy

we need only spaceO(k2 + k) = O(k2) to keep the model up to date. In fact, it is possible to update
the regression coefficient vectorb at each step without explicitly solving Equation 4 (see [You84]).

D Model selection

We show how feature selection with model combination can be done from the data gathered online
(i.e.,P andq for eachAWSOM equation).

D.1 Model testing

Lemma 3 (Square sum of residuals).If b is the least-squares solution to the overdetermined equation
Xb = y, then

sn ≡
n∑

i=1

(xi
Tb− yi)2 = bT Pb− 2bTq + y2

Proof. Straightforward from the definition ofsn, which in matrix form issn = (Xb− y)2.

Thus, besidesP andq, we only need to updatey2 (a single number), by addingy2
i to it as each

new value arrives.
Now, if we select a subsetI = {i1, i2, . . . , ip} ⊆ {1, 2, . . . , k} of thek variablesx1, x2, . . . , xk,

then the solutionbI for this subset is given byPIbI = qI and the SSR bysn = bT
IPIbI −

2bIqI + y2 where the subscriptI denotes straight row/column selection (e.g.,PI = [pij ,ik ]ij ,ik∈I)
The F-test (Fisher test)is a standard method in statistics to determine whether a reduction in

variance is statistically significant. In particular, iff is the ratio of the sample variance of the simplified
model (i.e., one with fewer variables) to the sample variance of the complete model, then theF-
distributiondescribes the probability thatf takes a certain value, assuming that the difference is due
to chance.

The F-test is based on the sample variances, which can be computeddirectly from the SSR, as
explained in Lemma 3. The F-distribution holds precisely (i.e., non-asymptotically) under normality
assumptions. However, in practice it works well in most circumstances, especially when the population
size is large. This is clearly the case with semi-infinite streams.
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D.2 Model combination

If we split measurementsxi into two subsetsX1 andX2 with corresponding outputsy1 andy2, then
the LS solution for both subsets combined is given byb = (XT X)−1XT y whereX =

[
XT

1 XT
2

]T

andy = [yT
1 yT

2 ]T , i.e.,

b = (XT
1 X1 + XT

2 X2)−1(XT
1 y1 + XT

2 y2) = (P1 + P2)−1(q1 + q2)

Therefore, it is possible to combine sub-models when reducing the number of levels (effectively re-
ducing theT parameter). Model selection as presented above can be extended to include this case.
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